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ABSTRACT 
 
Deteriorating ore grade and high demand of metals has tremendously influenced the unit capacity 
of SAG mills. Pebble circuits have been added to the existing SAG circuits to increase their unit 
capacity. To make the pebble circuits justifiable, the grate openings are increased almost to 4.5 
inches to draw large quantity of pebbles. The inherent transportation problems associated with 
SAG mills in closed circuit with pebble fraction are more complicated than the single stage SAG 
mill operation, because the coarse pebbles behave significantly different to that of slurry in pulp 
lifters. In addition, operation of mills at higher speed, to take advantage of precise design of high 
release angled shell lifters significantly reduces the discharge efficiency of the conventional pulp 
dischargers. The presence of a sizable quantity of pebbles in the pulp lifter limits the space 
available and reduces the flow gradient through the grate thus increases the load inside the mill 
and hence the mill power-draw. This paper analyses all the problems associated in discharge of 
slurry and pebbles in SAG mills with pebble circuits. The Outokumpu patented Turbo Pulp Lifter 
(TPLTM) aims at eliminating the inherent material transport problems to ensure good grinding 
conditions. Recent installation of TPLTM in a 26-ft SAG mill has proven these claims by reducing 
the specific power consumption while increasing the mill capacity.  
 
INTRODUCTION 
 
The conventional wisdom is to look at the semi-autogenous grinding (SAG) mill as just another 
grinding mill in which ball charge, mill filling, and mill speed are varied to attain maximum 
throughput.  Liner design for the SAG was also approached more from a wear perspective rather 
than a metallurgical and hydraulic-flow perspective.  The extensive research work carried out by 
Latchireddi and Morrell (1997,2003a and 2003b) has demonstrated to think of the SAG as more 
of a pump in which the grates and pulp discharger end (“impeller”) were designed to efficiently 
discharge the product sized particles smaller than the grate size with minimal recirculation out of 
the mill. 
 
The rock load in the mill is essentially depends on ore characteristics and the discharge rate of 
broken particles. The discharge rate of the product material depends on how efficiently the 
discharge pump (grate and pulp lifters) is operating. Similar to the impeller design affecting the 
pump capacity, the pulp lifter design affects the discharge capacity (or mill throughput) of the 
SAG/AG grinding mills. The general arrangement of AG/SAG mills discharge system is shown 
in Figure 1.  

BREAKAGE DISCHARGEBREAKAGEBREAKAGE DISCHARGEDISCHARGE

 
Figure 1: Schematic of a typical sag mill operation. 
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MATERIAL TRANSPORT IN AG/SAG MILLS 
 
Generally the discharge from AG/SAG mills consists of one or both of the following two 
components: 
 

• Slurry – water and finer particles generally smaller than 12mm, and 
• Pebbles – 20-100mm. 

 
The type of grinding circuit and the typical mill discharge are given below in Table 1. The 
material transport and the inherent problems associated with the conventional pulp lifter designs 
are summarized in Figure 2. 
 

Table 1: Types of grinding circuits and discharge problems. 
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Figure 2: Material transport problems in AG/SAG mill operation. 
 
Material transport problems in single stage AG/SAG circuits: 
 
The single stage AG/SAG mills have to handle large amounts of slurry as they are in closed 
circuit with classifiers whose circulating loads reach as high as 400-500%. The geometry of 
conventional pulp lifters is such that the slurry, once passed through the grate into the pulp lifter 
will always be in contact with the grate until it is completely discharged, which makes the 'flow-
back' process inevitable The performance analysis of conventional pulp lifter designs have shown 
that a large amount of slurry flows back from pulp lifter into the mill (Latchireddi, 2002, 
Latchireddi & Morrell, 2003b), which depends on the size and design of the pulp lifters. Higher 
mill speeds and higher the slurry viscosity leads to carryover of slurry inside the pulp lifter. 
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Although the curved pulp lifters have the advantage of minimizing the carryover aspect, flow-
back is inevitable. Different stages of slurry flow in pulp lifters are illustrated in Figure 3. 
 

      

Carry-overCarry-over

 
 

Figure 3: The schematic of flow-back and carry-over process in radial pulp lifters. 
 
Though the impact of flow-back may be of lower magnitude in open circuit grinding, flow-back 
can make a significant impact when the mills are operated in closed circuit, especially with 
cyclones and fine screens. The field of breakage diminishes when excessive slurry is present in 
the mill, where a significant amount of impact energy gets dissipated into the dense slurry pool, 
instead of being used to cause breakage of particles.  This inefficient usage of grinding energy 
reduces the grinding capacity.  
 
Material transport problems in ABC/SABC circuits with pebble crusher 
 
In ABC/SABC circuits, the AG or SAG mills are in closed circuit with screens and pebble 
crushers. The mill discharge from these mills consists of slurry, which goes to ball mills for 
further grinding, and coarse pebbles/rocks, which are crushed and sent back to the mill.  
 
To maximize the capacity of these circuits, general practice is to use grates with all pebble ports 
(reaching 4 inches) instead of normal grate openings to increase the pebble removal. In addition, 
operating mills at relatively higher speeds (78-80%) has become an option to increase mill 
capacity. The reasoning is because the higher the mill speed, the higher the number of 
impacts/collisions (Figure 4), which in turn is proportional to higher breakage of particles.  
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Figure 4: Typical relation between Mill speed and number of impacts. 
 
With the advent of DEM simulation techniques appropriate shell lifters can be designed to 
operate the mills at higher speeds. However, the inefficiency of pulp lifters increases with mill 
speed and so does the effect of the following factors: 
 
Pebbles carry-over: It is well known that the motion of the fluid and relatively coarse solids are 
different in an open channel flowing stream. In ABC and SABC circuits, once the slurry and 
pebbles pass through the grate into the pulp lifters, the motion or flow behavior of solids will be 
different to the slurry. The DEM simulation of pebbles flow in pulp lifters in 36-ft diameter SAG 
mill is shown in Figure 5. At the end of one revolution, all the pebbles are supposed to reach the 
discharge trunnion. However, as can be seen from Figure 6b, a significant amount of pebbles are 
retained inside the pulp lifters. The carryover of pebbles has been proven when a 36-ft diameter 
SAG mill was crash stopped using the air brakes. Figure 6 shows the snapshot of DEM 
simulation and the picture taken after crash stop at 9 O’clock.  
 

     
 

Figure 5: Pebbles carry-over inside the pulp lifter a) in 36-ft SAG mill, and b) DEM simulation. 
 
This work confirms that there is a significant quantity of coarse pebbles always remaining inside 
the pulp lifters. By the time a pulp lifter starts a new cycle from 6 O’clock, all the pebbles reach 
the bottom of the pulp lifter and occupies significant volume. As an illustration, the volume of 
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the pebbles retained was calculated in the test case and shown in Figure 6. The presence of these 
pebbles could block the outer rows of grate slots and reduces the flow gradient across the grate. 
To attain the flow gradient required, the load inside the mill raises to higher level as shown in 
Figure 6, drawing more power than necessary. This also leads to higher rock to ball ratio 
resulting in insufficient grinding energy in balls to break the rocks, thus leading to higher rock 
loads. 
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Figure 6: The effect of pebbles carry-over. 
 
Pebbles Flow-back: Similar to the slurry flow-back, the pebbles flowing back into the mill 
increases with increasing pebble port or grate slot size. As the pebbles flow down, they slide 
across the grate slots where they get equal chance to go back into the mill.  
 
Similar to slurry pool formation, pebbles flow-back would increase the quantity of critical size 
material in the mill. The amount of pebbles passing through the grate increases with angle of 
grate. A DEM simulation of this scenario for a 36-ft diameter SAG mill is shown in Figure 7. 
 

GrateGrate

 
Figure 7: DEM simulation of pebbles flow-back through grate slots. 
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It is imperative from the above facts that efficient removal of both slurry and coarse pebbles 
(critical size) is an important issue to ensure the efficient operation of ABC/SABC circuits. The 
effects of slurry pooling and pebble pooling are summarized in Figure 8.  
 

Increased rock:ball ratio

Increased charge loading

Inefficient grinding

Reduced flow gradientSlurry Pooling, and
Pebble pooling

Increased rock:ball ratio

Increased charge loading

Inefficient grinding

Reduced flow gradientSlurry Pooling, and
Pebble pooling

 
 

Figure 8: Effect of slurry pooling and pebble pooling. 
 
 
Elimination of the above mentioned material transport problems will allow the mill to respond 
truly in terms of power draw for the changes in mill load which depends on feed ore 
characteristics. 
 
 
TURBO PULP LIFTER (TPLTM) 
 
Outokumpu’s patented new design – TPLTM (patent pending), is a culmination of the above facts. 
From the point of retrofitting, TPLTM appears exactly like the conventional radial pulp lifter. 
 
Elimination of material problems using TPLTM will bring the following process benefits: 
 

• Allows mill to operate at maximum capacity. 
• Ensures good grinding conditions with lower grinding energy per ton. 
• Efficient operation even at higher mill speeds. 
• Operator friendly smooth mill operation. 
• Significantly improves wear life. 

 
TPLTM can be precisely designed to handle the maximum capacity. TPLTM can be easily retro-
fitted to the existing mills as demonstrated in Cortez Gold Mines. 
 
 
Performance of 26ft SAG mill with TPLTM  
 
The world’s first installation of TPL™ was done in a 26ft diameter by 12.5ft  EGL SAG mill at 
Cortez Gold Mines – a Barrick/Kennecott plant in Nevada, USA. The SAG mill is 26’ diameter x 
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12’3” EGL and powered by 4,500 HP motor driven by a variable speed LCI drive that can control 
the mill speed from 36% to 80% of critical speed. The general flowsheet of the circuit is shown 
in Figure 9. 
 

 
 

Figure 9: Cortez Gold Mines Mill #2 Flowsheet 
 

Only the DE – discharge end consisting of grate and pulp lifters, were replaced in the SAG mill. 
The ball charge was kept same at 9.08%. 
 
The ore type that was used for comparing pre and post installation of TPL™, was classified as 
the most troublesome due to its hard, blocky nature that was compounded by being pushed into 
the feeders due to a primary crusher shutdown that ultimately induced circuit cycling with the old 
SAG discharge end design. 
 
The pre and post comparison of grinding circuit performance with the same ore are shown in 
Table 2: 
 

Table 2: Pre and post TPL grinding circuit performance. 
 

 Pre-TPL Post-TPL 
Mill Feed Rate, TPH 344 421 
SAG Mill Power draw, kW 2915 1884 
SAG Specific Energy, kWh/t 8.48 4.74 
BM Specific Energy, kWh/t 11.13 8.43 
Plant Operating Wi, kWh/t 17.52 13.2 
Cost of Power, US$/Month 189K 121K 

 
 
The above results have been confirmed further with consistent performance over 12 weeks of 
operation. The comparison of 2.5 years of pre-TPL performance with 12 weeks of Post-TPL 
performance are shown in Figures 10-14. 
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Daily comments received from the operators were typical of, “we could never run steady and 
with confidence like this before with the old design for fear of the SAG mill getting quickly out 
of control” (Steiger, J., et al 2007). 
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Figure 10: SAG mill power draw operating trend. 
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Figure 11: SAG mill specific energy (kWh/t) trend. 
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Figure 12: BM mill specific energy (kWh/t) trend. 
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Figure 13: BM cyclone overflow P80 (% passing –200#) trend. 
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Figure 14: Plant operating work index, Wio (kWh/t) trend. 
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CONCLUSIONS 
 
Outokumpu’s patented Turbo Pulp Lifter (TPLTM) design eliminates all the material transport 
problems associated with the conventional radial and curved designs and achieves the following:  
 

• TPLTM significantly increases the energy efficiency of AG/SAG mill. 
• TPLTM allows the mill to operate at its maximum possible capacity. 
• TPLTM allows steady and smooth operation.  

 
The consistent and significantly improved performance of SAG mill with TPLTM proves that 
application of TPLTM will significantly benefit all AG/SAG mills. 
 
Flow-MODTM – an efficient design tool with appropriate mathematical models can be effectively 
used to precisely design TPLTM to handle the maximum capacity. 
 
As proven at Cortez Gold Mines, TPLTM can be easily retro-fitted to existing mills. 
 
In summation, the TPLTM design can improve the overall grinding performance of AG/SAG mills 
with predictable performance gains. 
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